
 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

110

January
2014

THE MACH KERNEL

Akshay Sharma

Anshu Vashisht

Deepika Yadav

Abstract

Mach is an operating system kernel developed at Carnegie-Mellon University to support

operating system research, primarily distributed and parallel computation. The Mach operating

system was designed to incorporate the many recent innovations in operating system research to

produce a technically advanced and fully functional system. Mach incorporates multiprocessing

support throughout which is extremely flexible and ranges from shared memory systems to

systems with no memory shared between processors. Mach provides a new foundation for UNIX

development that spans networks of uniprocessors and multiprocessors. This paper describes

Mach and its design. Also described are some of the details of its implementation and current

status.

Keywords: Multiprocessing, Mach Operating System, Shared Memory, Uniprocessors

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

111

January
2014

I. INTRODUCTION

Mach is an operating system kernel developed at Carnegie-Mellon University to support

operating system research, primarily distributed and parallel computation. The project at CMU

ran from 1985 to 1994 ending with Mach 3.0, which was finally a true microkernel. The Mach

operating system was designed to incorporate the many recent innovations in operating system

research to produce a technically advanced and fully functional system [1]. Mach was developed

as a replacement for the kernel in the BSD version of UNIX, so no new operating system would

have to be designed around it [2].

Several factors were considered in making the Mach operating System. It was important that the

operating system be:

 Multi-user and multitasking

 Network compatible

 An excellent program-development environment

 Well-represented in the university, research and business communities.

 Extensible and robust

 Capable of providing room for growth and future extensions

II. THE MACH MICRO KERNEL ARCHITECTURE

The Mach microkernel has been built as a base upon which UNIX and other operating systems

can be emulated. This emulation is done by a software layer that runs outside the kernel, as

shown in Fig 1. Each emulator consists of a part that is present in its application programs'

address space, as well as one or more servers that run independently from the application

programs. It should be noted that multiple emulators can be running simultaneously, so it is

possible to run 4.3BSD, System V, and MS-DOS programs on the same machine at the same

time.

http://en.wikipedia.org/wiki/Microkernel
http://en.wikipedia.org/wiki/Berkeley_Software_Distribution
http://en.wikipedia.org/wiki/UNIX

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

112

January
2014

Fig. 1: The abstract model for UNIX emulation using Mach.

Like other microkernels, the Mach kernel, provides process management, memory management,

communication, and I/O services. The idea behind the Mach kernel is to provide the necessary

mechanisms for making the system work, but leaving the policy to user-level processes. Mach

minimises kernel size by moving most kernel services into user-level processes.

A. Mach kernel features

The key features of Mach are:

1. Task and thread management: Mach supports the task and thread abstractions for managing

execution. Computation within a task is performed by one or more threads; these threads share

the address space and all other resources of the task. Threads are scheduled to processors by the

Mach kernel, and may run in parallel on a multiprocessor [3].

2. Interprocess communication: Mach provides Interprocess communication among threads via

constructs called ports. Ports are protected by a capability mechanism so that only Mach tasks

with appropriate send or receive capabilities can access a port. Mach tasks, threads, memory

objects, and processors are, all manipulated by sending messages to ports which represent them

[4].

3. Memory object management: The address space of a Mach task is represented as a collection of

mappings from linear addresses to offsets within Mach memory objects. The primary role of the

kernel in virtual memory management is to manage physical memory as a cache of the contents

of memory objects. The kernel's representation for the backing storage of a memory object is a

Mach port to which messages can be sent requesting or transmitting memory object data [5].

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

113

January
2014

4. System call redirection: The Mach kernel allows a designated set of system calls or traps to be

handled by code running in user mode within the calling task. The set of emulated system calls

needs to be set up only once; it is inherited by child tasks on fork operations. This feature allows

the binary emulation of operating system environments such as UNIX. It also allows for

monitoring, debugging.

5. User multiprocessing: A user-level multithreading package, the C Thread library [6], facilitates

the use of multiple threads within an address space. It exports mutual exclusion mutex locks and

condition variables for synchronization via condition wait and condition signal operations.

III. PROCESS MANAGEMENT

Process management in Mach deals with processes, threads, and scheduling.

A. Processes

A process in Mach consists primarily of an address space and a collection of threads that execute

in that address space. Processes are passive. Execution is associated with the threads. Processes

are used for collecting all the resources related to a group of cooperating threads into convenient

containers.

Fig 2 illustrates a Mach process. In addition to an address space and threads, it has some

ports and other properties. The process port is used to communicate with the kernel.

The bootstrap port is used for initialization when a process starts up. The very first process reads

the bootstrap port to learn the names of kernel ports that provide essential services.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

114

January
2014

Fig. 2: A Mach process.

The exception port is used to report exceptions caused by the process. The port tells the system

where the exception message should be sent. Debuggers also use the exception port.

The registered ports are normally used to provide a way for the process to communicate with

standard system servers.

A process can be runnable or blocked, independent of the state of its threads. If a process is

runnable, those threads that are also runnable can be scheduled and run. If a process is blocked,

its threads may not run, no matter what state they are in. The per-process items also include

scheduling parameters. These include the ability to specify which processors the process threads

can run on. Emulation addresses can be set to tell the kernel where in the process' address space

system call handlers are located. The kernel needs to know these addresses to handle UNIX

system calls that need to be emulated.

Mach provides a small number of primitives for managing processes. The most important of

these calls are shown in Table I.

Table I. Selected process management calls in Mach.

Call Description

Create Create a new process, inheriting certain properties

Terminate Kill a specified process

Suspend Increment suspend counter

Resume Decrement suspend counter. If it is 0, unblock the process

Priority Set the priority for current or future threads

Assign Tell which processor new threads should run on

Info Return information about execution time, memory usage, etc.

Threads Return a list of the process' threads

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

115

January
2014

B. Threads

The active entities in Mach are the threads. They execute instructions and manipulate their

registers and address spaces. Each thread belongs to exactly one process. All the threads in a

process share the address space and all the process-wide resources.

The thread port is analogous to the process port. Each thread has its own thread port, which it

uses to invoke thread-specific kernel services, such as exiting when the thread is finished. Mach

threads are managed by the kernel, that is, they are sometimes called heavyweight threads rather

than lightweight threads (pure user space threads).

Like a process, a thread can be runnable or blocked. A counter per thread can be

incremented and decremented. When it is zero, the thread is runnable. When it is positive, the

thread must wait until another thread lowers it to zero. This mechanism allows threads to control

each other's behaviour.

Mach's approach is the C threads package. This package is intended to make the kernel

thread primitives available to users in a simple and convenient form. The thread system calls are

listed in Table II.

Table II. The principal C threads calls for direct thread management

Call Description

Fork Create a new thread running the same code as the parent thread

Exit Terminate the calling thread

Join Suspend the caller until a specified thread exits

Detach Announce that the thread will never be jointed (waited for)

Yield Give up the CPU voluntarily

Self Return the calling thread's identity to it

C. Implementation of C Threads in Mach

Various implementations of C threads are available on Mach. The original one did everything in

user space inside a single process. This approach timeshared all the C threads over one kernel

thread, as shown in Fig. 3(a). This approach can also be used on UNIX or any other system that

provides no kernel support. The threads were run as co-routines, which mean that they were

scheduled non-pre-emptively. If one thread makes a blocking system call, such as reading from

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

116

January
2014

the terminal, the whole process is blocked. To avoid this situation, the programmer must avoid

blocking system calls.

Fig 3. (a) All C threads use one kernel thread. (b) Each C thread has its own kernel thread. (c)

Each C thread has its own single-threaded process. (d) Arbitrary mapping of user threads to

kernel threads.

A second implementation is to use one Mach thread per C thread, as shown in Fig. 3(b). These

threads are scheduled preemptively. Furthermore, on a multiprocessor, they may actually run in

parallel, on different CPUs. In fact, it is also possible to multiplex m user threads on n kernel

threads, although the most common case is m = n.

A third implementation package has one thread per process, as shown in Fig. 3(c). The

processes are set up so that their address spaces all map onto the same physical memory,

allowing sharing in the same way as in the previous implementations. This implementation is

only used when specialized virtual memory usage is required. The method has the drawback that

ports, UNIX files, and other per-process resources cannot be shared, limiting its value

appreciably.

The fourth package allows an arbitrary number of user threads to be mapped onto an arbitrary

number of kernel threads, as shown in Fig. 3(d). It gives the greatest flexibility and is the one

normally used at present

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

117

January
2014

IV. COMMUNICATION IN MACH

The goal of communication in Mach is to support a variety of styles of communication in a

reliable and flexible way. It can handle asynchronous message passing, RPC, byte streams, and

other forms as well.

A. Ports

The basis of all communication in Mach is a kernel data structure called a port. When a thread in

one process wants to communicate with a thread in another process, the sending thread writes the

message to the port and the receiving thread takes it out. Each port is protected to ensure that

only authorized processes can send to it and receive from it. Ports support unidirectional

communication. A port that can be used to send a request from a client to a server cannot also be

used to send the reply back from the server to the client. A second port is needed for the reply.

Ports support reliable, sequenced, message streams. If a thread sends a message to a port,

the system guarantees that it will be delivered. Messages sent by a single thread are also

guaranteed to be delivered in the order sent. Unlike pipes, ports support message streams, not

byte streams. When a port is created, 64 bytes of kernel storage space are allocated and

maintained until the port is destroyed, either explicitly, or implicitly under certain conditions.

The port contains the fields shown in Fig 4.

Fig 4: A Mach port.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

118

January
2014

When a thread creates a port, it gets back an integer identifying the port. This integer is used

in subsequent calls that send messages to the port or receive messages from it in order to identify

which port is to be used. Ports are kept track of per process, not per thread. The kernel, in fact,

does not even maintain a record of which thread created which port. Ports may be grouped

into port sets for convenience. A port may belong to at most one port set. It is possible to read

from a port set (but not write to one). A server, for example, can use this mechanism to read from

a large number of ports at the same time. The kernel returns one message from one of the ports in

the set. If all the ports are empty, the server is blocked.

B. Capabilities

To a first approximation, for each process, the kernel maintains a table of all ports to which the

process has access. This table is kept safely inside the kernel, where user processes cannot get at

it. Processes refer to ports by their position in this table, that is, entry 1, entry 2, and so on. We

will refer table entries as capabilities and will call the table containing the capabilities

a capability list. Each process has exactly one capability list. When a thread asks the kernel to

create a port for it, the kernel does so and enters a capability for it in the capability list for the

process to which the thread belongs. The calling thread and all the other threads in the same

process have equal access to the capability. Each capability consists not only of a pointer to a

port, but also a rights field telling what access the holder of the capability has to the port. Three

rights exist: RECEIVE, SEND, and SEND-ONCE.

The RECEIVE right gives the holder the ability to read messages from the port. At any instant

only one process may have the RECEIVE right for a port. A capability with a RECEIVE right

may be transferred to another process. A capability with the SEND right allows the holder to

send messages to the specified port. The SEND-ONCE right also allows a message to be sent,

but only one time. After the send is done, the kernel destroys the capability. This mechanism is

used for request-reply protocols. For example, a client wants something from a server, so it

creates a port for the reply message. It then sends the server a request message containing a

(protected) capability for the reply port with the SEND-ONCE right. After the server sends the

reply, the capability is deallocated from its capability list and the name is made available for a

new capability in the future.

In Fig. 5 both processes have a capability to send to port Y, but in A it is capability 3 and

in B it is capability 4. A capability list is tied to a specific process. When that process exits or is

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

119

January
2014

killed, its capability list is removed. Ports for which it holds a capability with the RECEIVE right

are no longer usable and are therefore also destroyed, even if they contain undelivered (and now

undeliverable) messages.

Fig 5: Capability lists

Primitives for Managing Ports: Mach provides about 20 calls for managing ports. All of these

are invoked by sending a message to a process port. A sampling of the most important ones is

given in Table III.

Table III. Selected port management calls in Mach

Call Description

Allocate Create a port and insert its capability in the capability list

Destroy Destroy a port and remove its capability from the list

Deallocate Remove a capability from the capability list

Extract-right Extract the n
th

 capability from another process

Insert-right Insert a capability in another process' capability list

Move-member Move a capability into a capability set

Set_qlimit Set the number of messages a port can hold

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

120

January
2014

C. Sending and Receiving Messages

The purpose of having ports is to send messages to them. Mach has a single system call for

sending and receiving messages. The call is wrapped in a library procedure called mach_msg. It

has seven parameters and a large number of options. To give an idea of its complexity, there are

35 different error messages that it can return.

The mach_msg call is used for both sending and receiving. It can send a message to a port

and then return control to the caller immediately, at which time the caller can modify the

message buffer without affecting the data sent. It can also try to receive a message from a port,

blocking if the port is empty, or giving up after a certain interval. A typical call

to mach_msg looks like this:

mach_msg(&hdr,options,send_size,rcv_size,rcv_port,timeout,notify_port);

The first parameter, hdr, is a pointer to the message to be sent or to the place where the incoming

message is put, or both. The message begins with a fixed header and is followed directly by the

message body. This layout is shown in Fig 6.

 Fig 6: The Mach message format

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

121

January
2014

This information is needed so that the kernel can tell where to send the message. The second

parameter, options, contains a bit specifying that a message is to be sent, and another one

specifying that a message is to be received. If both are on, an RPC is done. Another bit enables a

timeout, given by the timeout parameter, in milliseconds. Other bits in options allow a SEND

that cannot complete immediately to return control anyway, with a status report being sent to

notify_port later. All kinds of errors can occur here if the capability for notify_port is unsuitable

or changed before the notification can occur. The send_size and rcv_size parameters tell how

large the outgoing message is and how many bytes are available for storing the incoming

message, respectively. Rcv_port is used for receiving messages. It is the capability name of the

port or port set being listened to.

When a message is sent and successfully received, it is copied into the destination's address

space. It can happen, however, that the destination port is already full. What happens then

depends on the various options and the rights associated with the destination port. One

possibility is that the sender is blocked and simply waits until space becomes available in the

port. Another is that the sender times out. In some cases, it can exceed the port limit and send

anyway.

V. EXCEPTION HANDLING IN MACH

Exceptions are caused by the occurrence of unusual conditions during program execution; raising

an exception invokes the operating system to manage recovery from the unusual condition. This

paper concerns the design and implementation of an exception handling facility for the Mach [7]

operating system. Mach supports debuggers via a combination of independent kernel facilities

instead of concentrating debugger support in a single kernel component (e.g. ptrace). This

approach avoids duplicating functionality within the kernel by designing debugger support

facilities to allow use by other applications. This results in increased flexibility and functionality

which benefits all applications using these facilities, including debuggers. In addition the kernel

is simplified by the corresponding reduction in special purpose debugger support code. There are

four major classes of applications that use exceptions:

1. Debugging. Debuggers rely on exceptions generated by hardware trace and breakpoint facilities.

Other exceptions that indicate errors must be reported to the debugger; the presence of the

debugger indicates the user‟s interest in any anomalous program behaviour.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

122

January
2014

2. Core dumps. In the absence of a debugger, a fatal exception can cause the execution state of a

program to be saved (in a file) for later examination. Unix
2
 systems refer to these files as „core

dumps‟ for historical reasons [8].

3. Error handling. Certain applications handle their own exceptions (particularly arithmetic) under

some circumstances. For example, a handler could substitute zero for the result of a floating

underflow and continue execution. Error handlers are often required by high-level languages [9].

4. Emulation. Virtually all modern machines generate exceptions upon encountering operation

codes that cannot be executed by the hardware. Emulators can be built to execute the desired

operation in software [10].

A. A Model for Exception Handling

The Mach exception handling facility is based on a general model that describes the use of

exceptions. This model is derived from the requirements of applications that use exceptions. The

generality of the resulting model is sufficient to describe virtually all uses of exceptions.

Applications that use exceptions can be divided into two major classes:

1. Error Handlers: These components perform recovery actions in response to an exception and

resume execution of the thread involved. This class includes both error or exception handlers and

emulators. Error Handlers typically execute in the same address space as that thread for

efficiency reasons (access to state). The term „handler‟ is used to refer to any application that

uses exceptions.

2. Debuggers: These components examine the state of an entire application to investigate why an

exception occurred and/or why the program is misbehaving. This class includes interactive

debuggers and servers that produce core dumps; the latter can be viewed as front ends to

debuggers that examine core dumps. Debuggers usually execute in address spaces distinct from

the application for protection reasons.

Our model is derived by examining the requirements common to error handlers and debuggers.

The occurrence of an exception requires suspension of the thread involved and notification of a

handler. The handler receives the notification and performs some computation (e.g. error handler

fixes the error, debugger decides what to do next), after which the thread is either resumed or

terminated. On this basis we propose the following model to cover all uses of exceptions: the

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

123

January
2014

occurrence of an exception invokes a four step process involving the thread that caused the

exception (Victim) and the entity that handles the exception (Handler, the operating system):

1. Victim: raise -- cause notification of an exception‟s occurrence.

2. Victim: wait -- synchronize with completion of exception handling.

3. Handler: catch -- receive notification. This notification usually identifies the exception and the

victim. Some of this identification may be implicit in where and how the notification is received.

4. Handler: take action. There are two possible actions:

 clear -- clear exception causing victim to return from wait.

 terminate -- cause termination of victim thread.

The boldface primitives in this model constitute the high-level model interface to exceptions and

can be viewed as operating on "exception objects". The handler will usually perform other

functions between the catch and clear or terminate steps; these functions are particular to the

handler application itself and are not part of the exception model.

Any exception handling facility must implement these primitives in some form; as an example

we consider signal handling in Unix. An exception that invokes a signal handler uses the

following implementation of the model:

1. raise - Internal kernel code that translates the hardware exception to a signal and sends the signal

to the process. The kill() system call can be used to mimic this for user-detected exceptions.

2. wait - Implicit because the handler and victim execute in the same process; execution of the

victim cannot resume until the handler completes.

3. catch - Internal kernel code that invokes the handler and sets up its stack. Both the exception and

the entity that caused it are implicit in the choice of the handler and the process context that it

executes in.

4. clear - sigcleanup() or sigreturn() system call invoked when handler exits. These calls unwind

the stack and clear the kernel state associated with a signal handler.

5. terminate - exit() system call.

The model also applies to UNIX support for debuggers. This exception handling model serves as

a guide for future exception handling facilities.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

124

January
2014

VI. UNIX EMULATION IN MACH

Mach has various servers that run on top of it. Probably the most important one is a program that

contains a large amount of Berkeley UNIX inside itself. This server is the main UNIX emulator.

The implementation of UNIX emulation on Mach consists of two pieces, the UNIX server

and a system call emulation library, as shown in Fig 7.

When the system starts up, the UNIX server instructs the kernel to catch all system call traps and

vector them to addresses inside the emulation library of the UNIX process making the system

call. From that moment on, any system call made by a UNIX process will result in control

passing temporarily to the kernel and immediately thereafter passing to its emulation library. At

the moment control is given to the emulation library, all the machine registers have the values

they had at the time of the trap. This method of bouncing off the kernel back into user space is

sometimes called the trampoline mechanism. Once the emulation library gets control, it

examines the registers to determine which system call was invoked. It then makes an RPC to

another process, the UNIX server, to do the work. When it is finished, the user program is given

control again. This transfer of control need not go through the kernel. When the init process forks

off children, they automatically inherit both the emulation library and the trampoline mechanism,

so they, too, can make UNIX system calls. The EXEC system call has been changed so that it

does not replace the emulation library but just the UNIX program part of the address space.

Fig 7: UNIX emulation in Mach uses the trampoline mechanism.

The UNIX server is implemented as a collection of C threads. The emulation library

communicates with these threads using the usual Mach interprocess communication.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

125

January
2014

When a message comes in to the UNIX server, an idle thread accepts it, determines which

process it came from, extracts the system call number and parameters from it, carries it out, and

finally, sends back the reply. Most messages correspond exactly to one BSD system call.

One set of system calls that work differently are the file I/O calls. They could have been

implemented like this, but for performance reasons, a different approach was taken. When a file

is opened, it is mapped directly into the caller's address space, so the emulation library can get at

it directly, without having to do an RPC to the UNIX server. To satisfy a READ system call, for

example, the emulation library locates the bytes to be read in the mapped file, locates the user

buffer, and copies from the former to the latter as fast as it can.

The Mach kernel currently supplants most of the basic system interface functions of the UNIX

4.3BSD kernel: trap handling, scheduling, multiprocessor synchronization, virtual memory

management and interprocess communication. 4.3BSD functions are provided by kernel-state

threads which are scheduled by the Mach kernel and share communication queues with it.

The spectacular growth in size of the Berkeley UNIX kernel over the last few years has made it

apparent that continued expansion of UNIX functionality threatens to undercut the advantages of

simplicity and modifiability which mad UNIX an attractive operating system alternative for

research and development. Work is underway to remove non-Mach UNIX functionality from

kernel-state and provide these services through user-state tasks. The goal of this effort is to

“kernelize” UNIX is a substantially less complex and more easily modifiable basic operating

system. This system would be better adapted to new uniprocessor and multiprocessor

architectures as well as the demands of a large network environment. The success of this

transition will depend heavily on the fact that the basic Mach abstractions allow kernel facilities

such as memory object management and interprocess communication to be transparently

extended [9].

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

126

January
2014

VII. CONCLUSION

The Mach operating system is designed to incorporate the many recent innovations in operating-

system research to produce a fully functional, technically advanced operating system. BSD

UNIX emulation is done by an emulation library that lives in the address space of each UNIX

process. Its job is to catch system calls reflected back to it by the kernel, and pass them on to the

UNIX server to have them carried out. A few calls are handled locally, within the process'

address space. Other UNIX emulators are also being developed.

As we have shown, Mach is well on its way to achieving its goals. Mach 2.5 includes 4.3 BSD in

its kernel, which provides the emulation needed but enlarges the kernel. Mach uses lightweight

processes, in the form of multiple threads of execution within one task (or address space), to

support multiprocessing and parallel computation. Its extensive use of messages as the only

communication method ensures that protection mechanisms are complete and efficient. Finally,

by having the virtual memory system use messages to communicate with the daemons managing

the backing store, Mach provides great flexibility in the design and implementation of these

memory-object-managing tasks.

By providing low-level, or primitive, system calls from which more complex functions can be

built, Mach reduces the size of the kernel while permitting operating-system emulation at the

user level, much like IBM‟s virtual machine systems.

 IJMIE Volume 4, Issue 1 ISSN: 2249-0558
__

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s Directories of Publishing Opportunities, U.S.A.

International Journal of Management, IT and Engineering
http://www.ijmra.us

127

January
2014

REFERENCES

[1]. http://www.writework.com/essay/mach-operating-system-mach-history-mach-factors-were-

consi#8089

[2]. http://en.wikipedia.org/wiki/Mach_(kernel)

[3]. Black, D., Scheduling Support for Concurrency and Parallelismin the Mach Operating System,

COMPUTER 23, 5, (May 1990), 35-43.

[4]. Sansom, R., D. Julin, and R. Rashid, Extending a Capability Based System into a Network

Environment, Proceedings of the ACM SIGCOMM 86 Symposium on Communications

Architectures and Protocols, (August 1986), 265-274.

[5]. Young, M., A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, W. Bolosky, D. Black, and

R. Baron, The Duality of Memory and Communication in the Implementation of a

Multiprocessor Operating System, Proceedings of the Eleventh ACM Symposium on Operating

Systems Principles, (November 1987), 63-76.

[6]. Cooper, E. and R. Draves, C Threads, Technical Report CMU-CS-88-154, Computer Science

Department, Carnegie Mellon University, 1988.

[7]. Accetta, M.J., Baron, R.V., Bolosky, W., Golub, D.B., Rashid, R.F., Tevanian, A., and Young,

M.W. Mach: A New Kernel Foundation for UNIX Development. In Proceedings of Summer

Usenix. July, 1986.

[8]. Bach, M. J. The Design of the Unix Operating System. Prentice-Hall, Inc., Englewood Cliffs, NJ,

1986.

[9]. The Mach System – Appendix to Operating System Concepts (8th ed) by Avi Silberschatz, Peter

Baer Galvin and Greg Gagne.

[10]. Dobberpuhl, D.W., Supnik, R.M., and Witek, R.T. The MicroVAX 78032 Chip, A 32-Bit

Microprocessor. Digital Technical Journal (2):12-23, March, 1986.

http://www.writework.com/essay/mach-operating-system-mach-history-mach-factors-were-consi#8089
http://www.writework.com/essay/mach-operating-system-mach-history-mach-factors-were-consi#8089
http://en.wikipedia.org/wiki/Mach_(kernel)

